contestada

The outer surface of a steel gear is to be hardened by increasing its carbon content; the carbon is to be supplied from an external carbon-rich atmosphere, which is maintained at an elevated temperature. A diffusion heat treatment at 850 °C (1123 K) for 10 min increases the carbon concentration to 0.90 wt% at a position 1.0 mm below the surface. Estimate the diffusion time required at 650 °C (923 K) to achieve this same concentration also at a 1.0-mm position. Assume that the surface carbon content is the same for both heat treatments, which is maintained constant. D = 1.1 x 10-6 m2 /s and Qd = 87,400 J/mol C diffusion in a-Fe. (8 points)

Respuesta :

Answer:

[tex]\mathbf{t_2 = 75.696 \ min}[/tex]

Explanation:

From the question:

The outer surface of a steel gear is to be hardened by increasing its carbon content

Given that :

Diffusion of heat temperature at [tex]T_1[/tex] 850 °C  = 1123 K

Diffusion time [tex]t_1[/tex] = 10 min

diffusion after the carbon concentration at a position [tex]x_1[/tex] ( 1.0 mm) below the surface =  0.90 wt%

Preexponential = 1.1 × 10⁻⁶ m²/s

Activation Energy [tex]Q_d[/tex] = 87400 J/mol

We are to determine the time [tex]t_2[/tex] at 650  °C (923 K) to achieve the same diffusion result as at 850 °C (1123 K) for [tex]t_1[/tex] = 10 min

Considering Fick's second law for the condition of Constant surface concentration; we have:

[tex]\frac{Cx-C_0}{C_s-C_0} = 1-erf(\frac{x}{2\sqrt{Dt} } )[/tex]   ------ equation (1)

where;

[tex]C_0 =[/tex] concentration of the diffusing solute atom before diffusion

[tex]C_s[/tex] = Constant surface concentration

[tex]C_x[/tex] = Concentration at depth x after time t

[tex]erf(\frac{x}{2\sqrt{Dt} } )[/tex] = Gaussian error function

At some desired specific  concentration of solute [tex]C_1[/tex] in an alloy ; the left side of the above equation (1) thus becomes constant ;

i.e [tex]\frac{Cx-C_0}{C_s-C_0} = \mathbf{ constant}[/tex]

Then ;  [tex]\frac{x}{2\sqrt{Dt} }[/tex] = constant

[tex]\frac{x^2}{Dt}[/tex] = constant

Dt = constant

Thus; [tex]D_1t_1 = D_2t_2[/tex]

Therefore, the time [tex]t_2[/tex] at 650°C([tex]T_2[/tex] = 923 K) required to produce the same diffusion on result as at 850°C ([tex]T_1[/tex] = 1123 K) for [tex]t_1[/tex] = 10 min is [tex]t_2 = \frac{D_1t_1}{D_2}[/tex]

We need to first determine the Diffusion coefficient at 1123 K and 923 K ( i.e [tex]D_1[/tex]  and  [tex]D_2[/tex])

At [tex]T_1[/tex] = 1123 K , Diffusion coefficient [tex]D_1[/tex] is calculated by the equation [tex]D_1 = D_0 exp ( - \frac{Q_d}{RT_1})[/tex]       (equation from temperature dependence of the diffusion coefficient)

[tex]D_1 = 1.1 * 10^{-6} \ exp ( - \frac{87,400}{8.314*1123} )[/tex]

[tex]D_1 = 9.462*10^{-11} \ m^2/s[/tex]

[tex]D_2 = D_0 exp ( - \frac{Q_d}{RT_2})[/tex]

[tex]D_2 = 1.1 * 10^{-6} \ exp ( - \frac{87,400}{8.314*923} )[/tex]

[tex]D_2 = 1.25*10^{-11} m^2/s[/tex]

[tex]t_2 = \frac{ 9.462*10^{-11}*10}{ 1.25*10^{-11} }[/tex]

[tex]\mathbf{t_2 = 75.696 \ min}[/tex]

ACCESS MORE