Respuesta :
Answer:
[tex]\mathbf{t_2 = 75.696 \ min}[/tex]
Explanation:
From the question:
The outer surface of a steel gear is to be hardened by increasing its carbon content
Given that :
Diffusion of heat temperature at [tex]T_1[/tex] 850 °C = 1123 K
Diffusion time [tex]t_1[/tex] = 10 min
diffusion after the carbon concentration at a position [tex]x_1[/tex] ( 1.0 mm) below the surface = 0.90 wt%
Preexponential = 1.1 × 10⁻⁶ m²/s
Activation Energy [tex]Q_d[/tex] = 87400 J/mol
We are to determine the time [tex]t_2[/tex] at 650 °C (923 K) to achieve the same diffusion result as at 850 °C (1123 K) for [tex]t_1[/tex] = 10 min
Considering Fick's second law for the condition of Constant surface concentration; we have:
[tex]\frac{Cx-C_0}{C_s-C_0} = 1-erf(\frac{x}{2\sqrt{Dt} } )[/tex] ------ equation (1)
where;
[tex]C_0 =[/tex] concentration of the diffusing solute atom before diffusion
[tex]C_s[/tex] = Constant surface concentration
[tex]C_x[/tex] = Concentration at depth x after time t
[tex]erf(\frac{x}{2\sqrt{Dt} } )[/tex] = Gaussian error function
At some desired specific concentration of solute [tex]C_1[/tex] in an alloy ; the left side of the above equation (1) thus becomes constant ;
i.e [tex]\frac{Cx-C_0}{C_s-C_0} = \mathbf{ constant}[/tex]
Then ; [tex]\frac{x}{2\sqrt{Dt} }[/tex] = constant
[tex]\frac{x^2}{Dt}[/tex] = constant
Dt = constant
Thus; [tex]D_1t_1 = D_2t_2[/tex]
Therefore, the time [tex]t_2[/tex] at 650°C([tex]T_2[/tex] = 923 K) required to produce the same diffusion on result as at 850°C ([tex]T_1[/tex] = 1123 K) for [tex]t_1[/tex] = 10 min is [tex]t_2 = \frac{D_1t_1}{D_2}[/tex]
We need to first determine the Diffusion coefficient at 1123 K and 923 K ( i.e [tex]D_1[/tex] and [tex]D_2[/tex])
At [tex]T_1[/tex] = 1123 K , Diffusion coefficient [tex]D_1[/tex] is calculated by the equation [tex]D_1 = D_0 exp ( - \frac{Q_d}{RT_1})[/tex] (equation from temperature dependence of the diffusion coefficient)
[tex]D_1 = 1.1 * 10^{-6} \ exp ( - \frac{87,400}{8.314*1123} )[/tex]
[tex]D_1 = 9.462*10^{-11} \ m^2/s[/tex]
[tex]D_2 = D_0 exp ( - \frac{Q_d}{RT_2})[/tex]
[tex]D_2 = 1.1 * 10^{-6} \ exp ( - \frac{87,400}{8.314*923} )[/tex]
[tex]D_2 = 1.25*10^{-11} m^2/s[/tex]
[tex]t_2 = \frac{ 9.462*10^{-11}*10}{ 1.25*10^{-11} }[/tex]
[tex]\mathbf{t_2 = 75.696 \ min}[/tex]