The rate of growth of profit​ (in millions) from an invention is approximated by Upper P prime (x )equals x e Superscript negative x squared Baseline comma where x represents time in years. The total profit in year 2 that the invention is in operation is $ 25 comma 000. Find the total profit function Upper P (x ). Round to the nearest thousandth if necessary.

Respuesta :

Answer:

The function is  [tex]P(x) = \frac{1}{2} e^{-x^2} +0.016[/tex]

Step-by-step explanation:

From the question we are told that

    The rate of growth  is  [tex]P'(x) = xe^{x} - x^2[/tex]

     The total profit is [tex]P(2) =[/tex]$25,000

      The time taken to make the profit is [tex]x = 2 \ years[/tex]

         

From the question

     [tex]P'(x) = xe^{-x^2}[/tex]  is the rate of growth

  Now here x represent the time taken

Now the total profit is mathematically represented as

       [tex]P(x) = \int\limits {P'(x)} \, = \int\limits {xe^{-x^2}} \,[/tex]

So using substitution method

   We have that

                      [tex]u = - x^2[/tex]

                      [tex]du = 2xdx[/tex]

  So  

        [tex]p(x) = \int\limits {\frac{1}{2} e^{-u}} \, du[/tex]

       [tex]p(x) = {\frac{1}{2} [ e^{-u}} +c ][/tex]

       [tex]p(x) = {\frac{1}{2} e^{-x^2}} + \frac{1}{2} c[/tex]      recall  [tex]u = - x^2[/tex]   and  let  [tex]\frac{1}{2} c = Z[/tex]

       

At  x =  2 years  

     [tex]P(x) =[/tex]$25,000

So

       Since the profit rate is in million

    [tex]P(x) =[/tex]$25,000 = [tex]\frac{25000}{1000000} =[/tex]$0.025 millon dollars

So  

       [tex]0.025 = {\frac{1}{2} e^{-2^2}} + Z[/tex]  

=>    [tex]Z = 0.025 - {\frac{1}{2} e^{-2^2}}[/tex]  

       [tex]Z = 0.016[/tex]  

So the profit function becomes

         [tex]P(x) = \frac{1}{2} e^{-x^2} +0.016[/tex]

     

       

ACCESS MORE