Respuesta :
Answer:
Ts = 311.86 K = 38.86°C
Explanation:
The convection heat transfer coefficient for vertical orientation of the board is given by the formula:
[tex]h = 1.42(\frac{T_{s} - T_{f} }{L})^{0.25}[/tex]
where,
h = heat transfer coefficient
[tex]T_{s}[/tex] = surface temperature
[tex]T_{f}[/tex] = Temperature of fluid (air) = 30°C + 273 = 303 K
L = Characteristic Length = 50 cm = 0.5 m
Since the heat transfer through convection is given as:
[tex]Q_{conv} = hA_{s}(T_{s} - T_{f})[/tex]
using value of h, we get:
[tex]Q_{conv} = 1.42(\frac{T_{s} - T_{f} }{L})^{0.25} A_{s} (T_{s} - T_{f} )[/tex]
[tex]Q_{conv} = 1.42 A_{s} \frac{(T_{s} - T_{f} )^{1.25} }{L^{0.25} }[/tex]
where,
[tex]A_{s}[/tex] = Surface Area = (0.5 m)(0.5 m) = 0.25 m²
Now, the radiation heat transfer is given by:
[tex]Q_{rad} =[/tex] εσ[tex]A_{s} [(T_{s})^{4} - (T_{surr})^{4}][/tex]
where,
ε = emissivity of surface = 0.7
σ = Stefan Boltzman Constant = 5.67 x 10⁻⁸ W/m².k⁴
[tex]T_{surr}[/tex] = Temperature of surroundings = 25°C +273 = 298 k
Now, the total heat transfer rate will be:
[tex]Q_{total} = Q_{conv} + Q_{rad}[/tex]
using values:
[tex]Q_{total} =[/tex] [tex]1.42 A_{s} \frac{(T_{s} - T_{f} )^{1.25} }{L^{0.25} } +[/tex] εσ[tex]A_{s} [(T_{s})^{4} - (T_{surr})^{4}][/tex]
we know that the total heat transfer from the board can be found out by:
[tex]Q_{total} = (0.18 W) (121) = 21.78 W[/tex]
using values in the equation:
21.78 = (1.42)(0.25)[tex](T_{s} - 303)^{1.25}/0.5^{0.25}[/tex] + (0.7)(5.67 x 10⁻⁸)(0.25)[tex][(T_{s})^{4} - 298^{4}][/tex]
21.78 = (0.4222)[tex](T_{s} - 303)^{1.25}[/tex] + 9.922 x 10⁻⁹[tex](T_{s} )^{4}[/tex] - 78.25
100.03 = (0.4222)[tex](T_{s} - 303)^{1.25}[/tex]+ 9.922 x 10⁻⁹[tex](T_{s} )^{4}[/tex]
Solving this equation numerically by Newton - Raphson Method (Here, any numerical method or an equation solver can be used), we get the value of Ts to be:
Ts = 311.86 K = 38.86°C
The film temperature is the average of surface temperature and surrounding temperature. Therefore,
Film Temperature = (25°C + 38.86°C)/2 = 31.93°C
Since, this is very close to 30°C.
Hence, the assumption is good.