hus, D satisfying ​(ABC)DequalsI exists. Why does the expression for D found above also satisfy ​D(ABC)equalsI​, thereby showing that ABC is​ invertible? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. After substituting the expression for​ D, the product DABC simplifies to I by repeated application of the associative property and the definition of inverse matrices. B. After substituting the expression for​ D, left multiplying the product by nothing results in the equation IequalsABCD. C. After substituting the expression for​ D, taking the inverse of both sides of the equation results in the equation IequalsABCD. D. After substituting the expression for​ D, right multiplying the pr

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

First Question

Option A is correct

Second  Question

Option C is correct

Third   Question

     [tex]D = A^{-1} * B^{-1} * C^{-1}[/tex]

Fourth   Question

  So substituting for D in  (ABC) D =  I

                 [tex](ABC) * A^{-1} * B^{-1} * C^{-1} = I[/tex]

                 [tex]I = I[/tex]

This proof that  ABC is invertible

Step-by-step explanation:

From the question we are told that

   A , B and  C are invertible which means that [tex]A^{-1} , B^{-1}, C^{-1}[/tex] exist

Now

 From the question

          (ABC) D =  I

Where I is an identity matrix

   Now when we multiply both sides by  [tex]A^{-1}[/tex]  we have

          [tex]A^{-1} A BCD = A^{-1} * I[/tex]

          [tex]IBCD = A^{-1}[/tex]

Now when we multiply both sides by  [tex]B^{-1}[/tex]  we have  

         [tex]B^{-1 } *I BCD = A^{-1} * B^{-1}[/tex]

         [tex]I CD = A^{-1} * B^{-1}[/tex]

Now when we multiply both sides by  [tex]C^{-1}[/tex]  we have  

          [tex]C^{-1} * I CD = A^{-1} * B^{-1} * C^{-1}[/tex]

              [tex]I D = A^{-1} * B^{-1} * C^{-1}[/tex]

                 [tex]D = A^{-1} * B^{-1} * C^{-1}[/tex]

So substituting for D in the above equation

                 [tex](ABC) * A^{-1} * B^{-1} * C^{-1} = I[/tex]

                 [tex]I = I[/tex]

This proof that  ABC is invertible

 

Ver imagen okpalawalter8
ACCESS MORE