For [tex]x[/tex] between [tex]-\pi[/tex] and [tex]\pi[/tex], we have
[tex]\cos x[/tex] is continuous over its domain, so the intermediate value theorem tells us that
[tex]\cos x\ge\frac{\sqrt2}2[/tex]
is true for [tex]-\frac\pi4\le x\le\frac\pi4[/tex].
For all [tex]x[/tex], we take into account that [tex]\cos x[/tex] is [tex]2\pi[/tex]-periodic, so the above inequality can be expanded to
[tex]-\dfrac\pi4\le x+2n\pi\le\dfrac\pi4[/tex]
where [tex]n[/tex] is any integer. Equivalently,
[tex]-\dfrac\pi4-2n\pi\le x\le\dfrac\pi4-2n\pi[/tex]
To get the corresponding solution set for
[tex]\cos\left(x+\dfrac\pi3\right)\ge\dfrac{\sqrt2}2[/tex]
simply replace [tex]x[/tex] with [tex]x+\frac\pi3[/tex]:
[tex]-\dfrac\pi4-2n\pi\le x+\dfrac\pi3\le\dfrac\pi4-2n\pi[/tex]
[tex]\implies\boxed{-\dfrac{7\pi}{12}-2n\pi\le x\le-\dfrac\pi{12}-2n\pi}[/tex]