Answer:
E = - 500 V / m, v = 30.95 10⁴ m / s and t = 6.46 10⁻⁶ s
Explanation:
For this problem we use the relation
ΔU = - E s
E = -ΔU / s
E = - 500/1
E = - 500 V / m
Now we can look for the proton approach
F = q E
let's use Newton's second law
F = m a
a = F / m
a = q E / m
Now let's use kinematics relations, where the proton starts from the rest
v₀ = 0
v² = v₀² + 2 a x
v = √2 q E / m x
v = √ (2 1.6 10⁻¹⁹ 500 / 1.67 10⁻²⁷ 1)
v = √ (958.08 108)
v = 30.95 10⁴ m / s
for time let's use the equation
x = v₀ t + ½ to t2
t = √2x / a
t = √ (2x m / qE)
t = √ (2 1 1.67 10⁻²⁷ / (1.6 10⁻¹⁹ 500))
t = √ (0.004175 10⁻⁸)
t = 0.0646 10⁻⁴ s
t = 6.46 10⁻⁶ s