Answer:
98% of confidence intervals for the Population proportion of people who captured after appearing on the 10 most wanted list
(0.3583 , 0.4579)
Step-by-step explanation:
Explanation:-
Given sample size 'n' = 517
Given data Suppose a sample of 517 suspected criminals is drawn. Of these people, 211 were captured.
'x' =211
The sample proportion
[tex]p^{-} = \frac{x}{n} = \frac{211}{517} =0.4081[/tex]
[tex]q^{-} = 1-p^{-} = 1- 0.4081 = 0.5919[/tex]
98% of confidence intervals for the Population proportion of people who captured after appearing on the 10 most wanted list
[tex](p^{-} - Z_{\frac{\alpha }{2} } \sqrt{\frac{p^{-} (1-p^{-} )}{n} } , p^{-} + Z_{\frac{\alpha }{2} } \sqrt{\frac{p^{-} (1-p^{-} }{n} } )[/tex]
[tex](0.4081 - 2.326 \sqrt{\frac{0.4081 (0.5919 )}{517} } , 0.4081+ 2.326\sqrt{\frac{0.4081(0.5919 }{517} } )[/tex]
(0.4081-0.0498 , 0.4081 +0.0498)
(0.3583 , 0.4579)
Conclusion:-
98% of confidence intervals for the Population proportion of people who captured after appearing on the 10 most wanted list
(0.3583 , 0.4579)