Respuesta :

Answer:

[tex]\frac{1-2sin^2\theta}{sin^2\theta(1-sin^2\theta)}[/tex]

Step-by-step explanation:

Identities needed:

[tex]cos^2\theta + sin^2\theta = 1[/tex]

[tex]\frac{sin^n\theta}{cos^n\theta}=tan^n\theta[/tex]

[tex]\frac{1}{tan^n\theta} = cot^n\theta[/tex]

Convert into one fraction, using our third identity.

[tex]cot^2\theta-tan^2\theta[/tex]

[tex]\frac{1}{tan^2\theta} - tan^2\theta[/tex]

Multiply the right hand term by [tex]\frac{tan^2\theta}{tan^2\theta}[/tex] so we can simplify.

[tex]\frac{1-tan^4\theta}{tan^2\theta}[/tex]

Now, let's write our tans in terms of sin and cos, using our second identity.

[tex]\frac{1-\frac{sin^4\theta}{cos^4\theta}}{\frac{sin^2\theta}{cos^2\theta}}[/tex]

And simplify using division rules, and then simplify by expanding the numerator:

[tex]\frac{cos^2\theta(1-\frac{sin^4\theta}{cos^4\theta})}{sin^2\theta}[/tex]

[tex]\frac{cos^2\theta-\frac{sin^4\theta}{cos^2\theta}}{sin^2\theta}[/tex]

Now we can substitute cos for sin, using our first identity.

[tex]\frac{1-sin^2\theta-\frac{sin^4\theta}{1-sin^2\theta}}{sin^2\theta}[/tex]

Lets divide by [tex]sin^2\theta[/tex]

[tex]\frac{1}{sin^2\theta}-1-\frac{sin^2\theta}{1-sin^2\theta}[/tex]

And convert it back into one fraction:

[tex]\frac{1-sin^2\theta}{sin^2\theta}-\frac{sin^2\theta}{1-sin^2\theta}[/tex]

[tex]\frac{(1-sin^2\theta)^2-sin^4\theta}{sin^2\theta-sin^4\theta}[/tex]

Expand the binomial:

[tex]\frac{1-2sin^2\theta+sin^4\theta - sin^4\theta}{sin^2\theta(1-sin^2\theta)}[/tex]

[tex]\frac{1-2sin^2\theta}{sin^2\theta(1-sin^2\theta)}[/tex]

ACCESS MORE