Step-by-step explanation:
There are a total of 16 marbles, 8 of which are green.
(a) The probability the first marble is green is 8/16.
The marble is replaced, so there are still a total of 15 marbles, 8 of which are green. The probability the second marble is green is 8/16.
The probability of both events is (8/16) (8/16) = 1/4 = 0.2500.
(b) The probability the first marble is green is 8/16.
The marble is not replaced, so there are now a total of 15 marbles, 7 of which are green. The probability the second marble is green is 7/15.
The probability of both events is (8/16) (7/15) = 7/30 = 0.2333.