Respuesta :
Answer:
a) 86 atm
b) 86 atm
c) 645 m/s
Explanation:
See attachment for calculations on how i arrived at the answer
![Ver imagen barackodam](https://us-static.z-dn.net/files/df0/17efc518b2e400106a6a59d241dce58c.jpg)
The atmospheric pressure of 2.00 km above the surface of Venus is 86 atm and the root-mean-square speed of the CO2 molecules at the surface of Venus and at an altitude of 2.00 km is 645 m/sec.
Given :
- At the surface of Venus, the average temperature is a balmy 460∘C due to the greenhouse effect (global warming!), the pressure is 92 Earth-atmospheres, and the acceleration due to gravity is 0.894 g.
- The atmosphere is nearly all CO2 (molar mass 44.0g/m) and the temperature remains remarkably constant.
a) and b) In order to determine the atmospheric pressure of 2.00 km above the surface of Venus using the formula given below:
[tex]\rm P = P_0\times L^{\frac{Mg}{\rho T}}[/tex] --- (1)
The value of the expression [tex]\rm Mg/\rho T[/tex] is given below:
[tex]\rm \dfrac{Mg}{\rho T} = \dfrac{44\times 10^{-3}\times 9.8\times 10^3}{8.314\times 733}[/tex]
[tex]\rm \dfrac{Mg}{\rho T}=0.02076[/tex]
Now, substitute the values of the known terms in the expression (1).
[tex]\rm P=92\times L^{0.02076}[/tex]
P = 86 atm
c) The root-mean-square speed of the CO2 molecules at the surface of Venus and at an altitude of 2.00 km can be calculated as given below:
[tex]\rm V_{rms}=\sqrt{\dfrac{3RT}{M}}[/tex]
Now, substitute the values of the known terms in the above formula.
[tex]\rm V_{rms}=\sqrt{\dfrac{3\times 8.314\times 733}{44\times 10^{-3}}}[/tex]
Simplify the above expression.
[tex]\rm V_{rms} = 645\;m/sec[/tex]
For more information, refer to the link given below:
https://brainly.com/question/7213287