Answer:
a) Boom = 162.50%
Normal =20.00%
Recession = - 100.00%
b) Expected return = 27.50%
Standard deviation = 107.30%
Explanation:
a) To find the rate of return for each economy state, let's use:
Rate of return = (Dividend +Stock price next year-stock price today)/stock price today
i) For Boom:
[tex] \frac{10 + 200 - 80}{80} = 1.625 [/tex] = 162.50%
ii) Normal:
[tex]\frac{6 + 90- 80}{80} = 0.2 [/tex] = 20.00%
iii) Recession :
[tex]\frac{0 + 0 - 80}{80} = - 1 [/tex] = -100%
b) To calculate the expected rate of return, let's use:
Expected return = Sum of expected return in different scenario / number of economy states
[tex] = \frac{162.5 + 20 - 100}{3} = 27.50[/tex]
Standard deviation:
To find the standard deviation, let's use:
Standard deviation = √[(sum of square of expected return in each scenario -average return)/n]
[tex] = \sqrt{\frac{(162.50-27.50)^2+(20-27.50)^2+(-100-27.50)^2}{3}} [/tex]
[tex] = \sqrt{\frac{(135)^2 + (-7.50)^2 + (-127.50)^2}{3}} [/tex]
[tex] = \sqrt{\frac{18225+56.25+16256.25}{3} [/tex]
= 107.30%
Standard deviation = 107.30%