Respuesta :
Answer:
1) [tex] p_i \geq 0 , \forall i[/tex]
2)[tex] \sum_{i=1}^n P_i = 1, i =1,2,...,n[/tex]
And for this case we have:
[tex] \frac{1}{2}+\frac{1}{6}= \frac{2}{3}[/tex]
By the complement rule we can find the probability that the spinner land in a non black or red space:
[tex]p(N) = 1- \frac{1}{2} -\frac{1}{3}= \frac{1}{6}[/tex]
And then the probability distribution would be:
Color    Red   Black   N
Prob. Â Â Â 1/3 Â Â Â Â 1/2 Â Â Â 1/6
Step-by-step explanation:
For this case we have two possible outcomes for the spinner experiment:
[tex] p(black) =\frac{1}{2}[/tex]
[tex] p(red) = \frac{1}{3}[/tex]
In order to have a probability distribution we need to satisfy two conditions:
1) [tex] p_i \geq 0 , \forall i[/tex]
2)[tex] \sum_{i=1}^n P_i = 1, i =1,2,...,n[/tex]
And for this case we have:
[tex] \frac{1}{2}+\frac{1}{6}= \frac{2}{3}[/tex]
By the complement rule we can find the probability that the spinner land in a non black or red space:
[tex]p(N) = 1- \frac{1}{2} -\frac{1}{3}= \frac{1}{6}[/tex]
And then the probability distribution would be:
Color    Red   Black   N
Prob. Â Â Â 1/3 Â Â Â Â 1/2 Â Â Â 1/6