Respuesta :

Answer:

1) [tex] p_i \geq 0 , \forall i[/tex]

2)[tex] \sum_{i=1}^n P_i = 1, i =1,2,...,n[/tex]

And for this case we have:

[tex] \frac{1}{2}+\frac{1}{6}= \frac{2}{3}[/tex]

By the complement rule we can find the probability that the spinner land in a non black or red space:

[tex]p(N) = 1- \frac{1}{2} -\frac{1}{3}= \frac{1}{6}[/tex]

And then the probability distribution would be:

Color      Red     Black    N

Prob.      1/3         1/2       1/6

Step-by-step explanation:

For this case we have two possible outcomes for the spinner experiment:

[tex] p(black) =\frac{1}{2}[/tex]

[tex] p(red) = \frac{1}{3}[/tex]

In order to have a probability distribution we need to satisfy two conditions:

1) [tex] p_i \geq 0 , \forall i[/tex]

2)[tex] \sum_{i=1}^n P_i = 1, i =1,2,...,n[/tex]

And for this case we have:

[tex] \frac{1}{2}+\frac{1}{6}= \frac{2}{3}[/tex]

By the complement rule we can find the probability that the spinner land in a non black or red space:

[tex]p(N) = 1- \frac{1}{2} -\frac{1}{3}= \frac{1}{6}[/tex]

And then the probability distribution would be:

Color      Red     Black    N

Prob.      1/3         1/2       1/6

Answer:

1/27

Step-by-step explanation:

ACCESS MORE

Otras preguntas