given a1 = 3645 and a6 = 15, find a3
![given a1 3645 and a6 15 find a3 class=](https://us-static.z-dn.net/files/d51/1335196f2edd21c96c28a51bf04140bc.png)
Answer:
[tex]a_{3} = 405[/tex]
Step-by-step explanation:
A geometric sequence is based on the following equation:
[tex]a_{n+1} = ra_{n}[/tex]
In which r is the common ratio.
This can be expanded for the nth term in the following way:
[tex]a_{n} = a_{1}r^{n-1}[/tex]
In which [tex]a_{1}[/tex] is the first term.
In this question:
[tex]a_{1} = 3645, a_{6} = 15[/tex]
Applying the equation:
[tex]a_{6} = a_{1}r^{6-1}[/tex]
[tex]a_{6} = a_{1}r^{5}[/tex]
[tex]3645r^{5} = 15[/tex]
[tex]r^{5} = \frac{15}{3645}[/tex]
[tex]r^{5} = \frac{1}{243}[/tex]
[tex]r = \sqrt[5]{\frac{1}{243}}[/tex]
[tex]r = \frac{1}{3}[/tex]
So
[tex]a_{n} = 3645 \times (\frac{1}{3})^{n-1}[/tex]
[tex]a_{3} = 3645 \times (\frac{1}{3})^{3-1} = 405[/tex]