Respuesta :

Answer:

[tex]a_{3} = 405[/tex]

Step-by-step explanation:

A geometric sequence is based on the following equation:

[tex]a_{n+1} = ra_{n}[/tex]

In which r is the common ratio.

This can be expanded for the nth term in the following way:

[tex]a_{n} = a_{1}r^{n-1}[/tex]

In which [tex]a_{1}[/tex] is the first term.

In this question:

[tex]a_{1} = 3645, a_{6} = 15[/tex]

Applying the equation:

[tex]a_{6} = a_{1}r^{6-1}[/tex]

[tex]a_{6} = a_{1}r^{5}[/tex]

[tex]3645r^{5} = 15[/tex]

[tex]r^{5} = \frac{15}{3645}[/tex]

[tex]r^{5} = \frac{1}{243}[/tex]

[tex]r = \sqrt[5]{\frac{1}{243}}[/tex]

[tex]r = \frac{1}{3}[/tex]

So

[tex]a_{n} = 3645 \times (\frac{1}{3})^{n-1}[/tex]

[tex]a_{3} = 3645 \times (\frac{1}{3})^{3-1} = 405[/tex]

ACCESS MORE