Respuesta :
Answer:
90% confidence interval for the population average amount of purchases is [$4.54 , $6.71].
Step-by-step explanation:
We are given the randomly sampled 24 purchases from several convenience stores in suburban Long Island and tabulated the amounts to the nearest dollar;
2, 11, 8, 7, 9, 3, 5, 4, 2, 1, 10, 8, 14, 7, 6, 3, 7, 2, 4, 1, 3, 6, 8, 4
Assume that the population standard deviation is 3.23 and the population is normally distributed.
Firstly, the Pivotal quantity for 90% confidence interval for the population average is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\bar X[/tex] = sample average amount of purchases = [tex]\frac{\sum X}{n}[/tex] = $5.625
[tex]\sigma[/tex] = population standard deviation = $3.23
n = sample of purchases = 24
[tex]\mu[/tex] = population average amount of purchases
Here for constructing 90% confidence interval we have used One-sample z test statistics as we know about population standard deviation.
So, 90% confidence interval for the population average, [tex]\mu[/tex] is ;
P(-1.645 < N(0,1) < 1.645) = 0.90 {As the critical value of z at 5% level
of significance are -1.645 & 1.645}
P(-1.645 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < 1.645) = 0.90
P( [tex]-1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.90
P( [tex]\bar X-1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ) = 0.90
90% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] , [tex]\bar X+1.645 \times {\frac{\sigma}{\sqrt{n} } }[/tex] ]
= [ [tex]5.625-1.645 \times {\frac{3.23}{\sqrt{24} } }[/tex] , [tex]5.625+1.645 \times {\frac{3.23}{\sqrt{24} } }[/tex] ]
= [4.54 , 6.71]
Therefore, 90% confidence interval for the population average amount of purchases is [$4.54 , $6.71].