Respuesta :
Answer:
Check the explanation
Step-by-step explanation:
We want to estimate the total weight of grain on the field based on the data on a simple random sample of 5 piles out of 200. The population and sample sizes are N=200 & n=5 respectively.
1) Let Y_1,Y_2,...,Y_{200} be the weight of grain in the 200 piles and y_1,y_2,...,y_{5} be the weights of grain in the pile from the simple random sample.
We know, the sample mean is an unbiased estimator of the population mean. Therefore,
[tex]\widehat{\mu}=\overline{y}=\frac{1}{5}\sum_{i=1}^{5}y_i=\frac{1}{5}(3.3+4.1+4.7+5.9+4.5)=4.5[/tex]
where \mu is the mean weight of grain for all the 200 piles.
Hence, the total grain weight of the population is
[tex]\widehat{Y}=Y_1+Y_2+...+Y_{200}[/tex]
=[tex]200\times \widehat{\mu}\: \: \: =200\times 4.5\: \: \: =900\, lbs[/tex]
2) To calculate a bound on the error of estimates, we need to find the sample standard deviation.
The sample standard deviation is
S=[tex]\sqrt{\frac{1}{5-1}\sum_{i=1}^{5}(y_i-\overline{y})^2}\: \: \: =0.9486[/tex]
Then, the standard error of [tex]\widehat{Y} is[/tex]
[tex]\sigma_{\widehat{Y}} =\sqrt{\frac{N^2S^2}{n}\bigg(\frac{N-n}{N}\bigg)}\: \: \:[/tex]=83.785
Hence, a 95% bound on the error of estimates is
[tex][\pm z_{0.025}\times \sigma_{\widehat{Y}}]\: \: \: =[\pm 1.96\times 83.875]\: \: \: =[\pm 164.395][/tex]
3) Let x_1,x_2,...,x_5 denotes the total weight of the sampled piles.
Mean total weight of the sampled piles is
[tex]\overline{x}=\frac{1}{5}\sum_{i=1}^{5}x_i=45[/tex]
The sample ratio is
[tex]r=\frac{\overline{y}}{\overline{x}}=\frac{4.5}{45}[/tex]=0.1 , this is also the estimate of the population ratio R=[tex]\frac{\overline{Y}}{\overline{X}} .[/tex]
Therefore, the estimated total weight of grain in the population using ratio estimator is
[tex]\widehat{Y}_R\: \: =r\times 8800\: \: =0.1\times 8800\: \: =880\,[/tex] lbs
4) The variance of the ratio estimator is
var(r)=[tex]\frac{N-n}{N}\frac{1}{n}\frac{1}{\mu_x^2}\frac{\sum_{i=1}^{5}(y_i-rx_i)^2}{n-1} , where \mu_x=8800/200=44lbs[/tex]
=[tex]\frac{200-5}{200}\, \frac{1}{5}\: \frac{1}{44^2}\, \frac{0.2}{5-1}=0.000005[/tex]
Hence, the standard error of the estimate of the total population is
[tex]\sigma_R=\sqrt{X^2 \: var(r)}\: \: \: =\sqrt{8800^2\times 0.000005}\: \: \:[/tex]=21.556
Hence, a 95% bound on the error of estimates is
[tex][\pm z_{0.025}\times \sigma_{R}]\: \: \: =[\pm 1.96\times 21.556]\: \: \: =[\pm 42.25][/tex]
Answer:
1.900lbs
2. + or - 164.395
Step-by-step explanation:
We want to estimate the total weight of grain on the field based on the data on a simple random sample of 5 piles out of 200. The population and sample size
are N=200 & n=5 respectively.
1.Let Y1,Y2,...,Y{200} be the weight of grain in the 200 piles and y1,y2,...,y{5} be the weights of grain in the pile from the simple random sample.
We know, the sample mean is an unbiased estimator of the population mean. Therefore,
Therefore,
Mean= (3.3+4.1+4.7+5.9+4.5)/5=4.5
where \mu is the mean weight of grain for all the 200 piles.
Hence, the total grain weight of the population is
Y=Y1+Y2+...+Y{200}
=200×mean: =200× 4.5= 900lbs
2.
To calculate a bound on the error of estimates, we need to find the sample standard deviation.
The sample standard deviation is= 0.9486
And the standard error=83.785
Hence, a 95% bound on the error of estimates is
error of estimates is + or - 164.395
The formula for standard deviation and standard error is attached
![Ver imagen igeclement43](https://us-static.z-dn.net/files/ddf/9dadec56b1afcf4e26ddf780d9178b53.jpg)
![Ver imagen igeclement43](https://us-static.z-dn.net/files/d99/02790b2d66f8c988813bf2a512681c9f.jpg)