Answer:
a.
radius = 9.8551 cm
height = 9.8551 cm
b.
area = 915.3633 cm^2
Step-by-step explanation:
a.
Let the radius of the cylinder be r, and let the height of the cylinder be h.
Volume of the cylinder:
[tex] V = \pi r^2h [/tex]
[tex] \pi r^2 h = 3007 [/tex]
Solve for h:
[tex] h = \dfrac{3007}{\pi r^2} [/tex]
Surface area of the cylinder (lateral are + 1 base only):
[tex] A = \pi r^2 + 2 \pi rh [/tex]
Substitute h found above:
[tex] A = \pi r^2 + 2 \pi r \times \dfrac{3007}{\pi r^2} [/tex]
[tex] A = \pi r^2 + \dfrac{6014}{r} [/tex]
Take the first derivative of the area with respect to the radius.
[tex] A = \pi r^2 + 6014r^{-1} [/tex]
[tex] \dfrac{dA}{dr} = 2 \pi r + (-1)6014r^{-2} [/tex]
[tex] \dfrac{dA}{dr} = 2 \pi r - \dfrac{6014}{r^2} [/tex]
Set the derivative equal to zero and solve for r.
[tex] (r^2)2 \pi r - (r^2)\dfrac{6014}{r^2} = 0 [/tex]
[tex] 2 \pi r^3 - 6014 = 0 [/tex]
[tex] \pi r^3 - 3007 = 0 [/tex]
[tex] r^3 = \dfrac{3007}{\pi} [/tex]
[tex]r = \sqrt[3]{\dfrac{3007}{\pi}}[/tex]
[tex] r = 9.8551 [/tex]
[tex] h = \dfrac{3007}{\pi r^2} [/tex]
[tex] h = \dfrac{3007}{\pi (9.8551)^2} [/tex]
[tex] h = 9.8551 [/tex]
radius = 9.8551 cm
height = 9.8551 cm
b.
[tex] A = \pi r^2 + \dfrac{6014}{r} [/tex]
[tex] A = \pi (9.8551)^2 + \dfrac{6014}{9.8551} [/tex]
[tex] A = 305.1211 + 641.2422 [/tex]
[tex] A = 915.3633 [/tex]
area = 915.3633 cm^2