Respuesta :

Answer:

first three

Step-by-step explanation:

quizlet

The true statements regarding the diagram are:

[tex]m\angle 3+m\angle 4=180^{\circ}\\\\m\angle 2+m\angle 4+m\angle 6=180^{\circ}\\\\m\angle 2+m\angle 4=m\angle 5[/tex]

What is interior angle?

"It is an angle inside a polygon."

What is exterior angle?

"It is the angle between a side of a polygon and an extended adjacent side."

For given question,

We know, the sum of an adjacent interior angle and exterior angle is always equal to 180°.

⇒ [tex]m\angle 1+m\angle 2=180^{\circ}[/tex]

⇒ [tex]m\angle 3+m\angle 4=180^{\circ}[/tex]

⇒ [tex]m\angle 5+m\angle 6=180^{\circ}[/tex]                    ...................(i)

We know, the sum of all angles of triangle is 180°

⇒ [tex]m\angle 2+m\angle 4+m\angle 6=180^{\circ}[/tex]            ..............(ii)

From (i),

[tex]m\angle 6=180^{\circ}-m\angle 5[/tex]

So, equation (ii) would be,

⇒ [tex]m\angle 2+m\angle 4+ 180^{\circ}-m\angle 6=180^{\circ}[/tex]

⇒ [tex]m\angle 2+m\angle 4=m\angle 5[/tex]

Therefore, the true statements regarding the diagram are:

[tex]m\angle 3+m\angle 4=180^{\circ}\\\\m\angle 2+m\angle 4+m\angle 6=180^{\circ}\\\\m\angle 2+m\angle 4=m\angle 5[/tex]

Learn more about interior and exterior angle here:

https://brainly.com/question/10638383

#SPJ2