For a certain strain of bacteria, r, is 0.825 (compounded continuously) when t is measured in days. How long will
it take 20 bacteria to increase to 2000? Round to the nearest hundredth.​

Respuesta :

Answer:5.48 days

Step-by-step explanation:

Given

Initial amount of bacteria [tex]x_o=20[/tex]

Final Population of bacteria [tex]x=2000[/tex]

[tex]r=0.825[/tex]

Using formula

[tex]x=x_o(2)^{\frac{T}{r}}[/tex]

where T=time in days

[tex]2000=20(2)^{\frac{T}{0.825}}[/tex]

[tex]100=2^{\frac{T}{0.825}}[/tex]

Taking log both side

[tex]\log_{10} (100)=\log _{10} (2^{\frac{T}{0.825}})[/tex]

[tex]2=\frac{T}{0.825}\log _{10}2[/tex]

[tex]T=\dfrac{2\times 0.825}{\log 2}[/tex]

[tex]T=5.48\ days[/tex]

ACCESS MORE