Answer:
Arc length is [tex]\dfrac{3\pi }{4}\ \text{inches}[/tex]
Step-by-step explanation:
We have,
Central angle is 15 degrees and the radius of the circle measures 9 inches.
It is required to find the arc length of the sector.
The relation between arc length and the central angle is given by :
[tex]\dfrac{\text{arc length}}{\text{circumference}}=\dfrac{\theta}{360}[/tex]
Circumference, [tex]C=2\pi r=18\pi[/tex]
[tex]\theta=15^{\circ}[/tex]
[tex]\dfrac{x}{18\pi }=\dfrac{15}{360}\\\\\dfrac{x}{18\pi }=\dfrac{1}{24}\\\\x=\dfrac{18\pi }{24}\\\\x=\dfrac{3\pi }{4}\ \text{inches}[/tex]
Hence, the correct option is (b).