Answer:
A. I and IV
Step-by-step explanation:
Solving a quadratic equation:
Given a second order polynomial expressed by the following equation:
[tex]ax^{2} + bx + c, a\neq0[/tex].
This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:
[tex]x_{1} = \frac{-b + \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]x_{2} = \frac{-b - \sqrt{\bigtriangleup}}{2*a}[/tex]
[tex]\bigtriangleup = b^{2} - 4ac[/tex]
A quadratic equation has two distinct real zeros if:
[tex]\bigtriangleup > 0[/tex]
So
I: [tex]f(x) = -x^{2} + 14x - 45[/tex]
[tex]a = -1, b = 14, c = -45[/tex]
[tex]\bigtriangleup = 14^{2} - 4*(-1)*(-45) = 16[/tex]
So function I has two distinct real zeros.
II: [tex]f(x) = 4x^{2} + 4[/tex]
[tex]a = 4, b = 0, c = 4[/tex]
[tex]\bigtriangleup = 0^{2} - 4*4*4 = -64[/tex]
Negative, so II has no real zeros.
III: [tex]f(x) = 2x^{2} + 12x + 18[/tex]
[tex]a = 2, b = 12, c = 18[/tex]
[tex]\bigtriangleup = 12^{2} - 4*2*18 = 0[/tex]
So III has one real zero with double multiplicity, that is, two equal zeros.
IV: [tex]f(x) = 3x^{2} -4x - 4[/tex]
[tex]a = 3, b = -4, c = -4[/tex]
[tex]\bigtriangleup = (-4)^{2} - 4*3*(-4) = 64[/tex]
So function IV has two distinct real zeros.
So the correct answer is:
A. I and IV