Answer:
[tex]-\frac{2}{\sqrt{2}}[/tex] or [tex]-\sqrt{2}[/tex]
Step-by-step explanation:
[tex]\sec{x}[/tex] is the reciprocal of [tex]\cos{x}[/tex], or in symbols: [tex]\sec{x}=\frac{1}{\cos{x}}[/tex]. [tex]\tan{x}[/tex] is also the ratio of [tex]\sin{x}[/tex] to [tex]\cos{x}[/tex], and we can multiply both sides of the equation [tex]\tan{x}=\frac{\sin{x}}{\cos{x}}[/tex] by [tex]\frac{1}{\sin{x}}[/tex] to get the equation [tex]\frac{\tan{x}}{\sin{x}}=\frac{1}{\cos{x}}[/tex]. Of course, this is just the definition of [tex]\sec{x}[/tex], so we can rewrite this fact as [tex]\sec{x}=\frac{\tan{x}}{\sin{x}}[/tex].
In this problem, we're given that [tex]\sin{x}=\frac{\sqrt{2} }{2}[/tex] and [tex]\tan{x}=-1[/tex], so plugging those two values into our equation gives us
[tex]\sec{x}=\dfrac{-1}{\frac{\sqrt{2}}{2}} =-\frac{2}{\sqrt{2}}[/tex]
We could leave our solution as [tex]-\frac{2}{\sqrt{2}}[/tex], or we could rationalize the denominator to get a solution of
[tex]-\frac{2}{\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=-\frac{2\sqrt{2}}{2}=-\sqrt{2}[/tex]