Answer:
The radius of a cone is [tex]\dfrac{3}{\sqrt{\pi} }\ \text{units}[/tex].
Step-by-step explanation:
The formula of the volume of a cone is given by :
[tex]V=\dfrac{1}{3}\pi r^2 h[/tex]
r is radius of cone
h is height of cone
We have,
Volume of a cone is 3x cubic units and height is x units. Putting the values of volume and height such that,
[tex]r=\sqrt{\dfrac{3V}{\pi h}}\\\\r=\sqrt{\dfrac{3\times 3x}{\pi x}} \\\\r=\sqrt{\dfrac{3\times 3}{\pi}}\\\\r=\sqrt{\dfrac{9}{\pi}}\\\\r=\dfrac{3}{\sqrt{\pi} }\ \text{units}[/tex]
So, the radius of a cone is [tex]\dfrac{3}{\sqrt{\pi} }\ \text{units}[/tex].