Respuesta :
Answer:
Approximately [tex]2.46\times 10^3\; \rm g[/tex].
Explanation:
Molar mass of C₈H₁₈ and O₂
Look up the following relative atomic mass values on a modern periodic table:
- [tex]\rm C[/tex]: [tex]12.011[/tex].
- [tex]\rm H[/tex]: [tex]1.008[/tex].
- [tex]\rm O[/tex]: [tex]15.999[/tex].
Calculate the molar mass of octane, [tex]\rm C_8 H_{18}[/tex]:
[tex]M(\rm C_8 H_{18}) = 8 \times 12.011 + 18 \times 1.008 = 114.232\; \rm g \cdot mol^{-1}[/tex].
Similarly, calculate the molar mass of [tex]\rm O_2[/tex]:
[tex]M(\mathrm{O_2}) = 2 \times 15.999 = 31.998 \; \rm g \cdot mol^{-1}[/tex].
Number of moles of octane molecules
How many moles of molecules in [tex]702\; \rm g[/tex] of octane, [tex]\rm C_8 H_{18}[/tex]?
[tex]\displaystyle n({\rm C_8 H_{18}}) = \frac{m({\rm C_8 H_{18}})}{M({\rm C_8 H_{18}})} = \frac{702\; \rm g}{114.232\; \rm g \cdot mol^{-1}}\approx 6.1454\; \rm mol[/tex].
Number of moles of O₂ required
Make sure that the chemical equation here is balanced.
In this equation,
- The coefficient of [tex]\rm O_2[/tex] is [tex]25[/tex], while
- The coefficient of [tex]\rm C_8 H_{18}[/tex] is [tex]2[/tex].
Ratio between the two coefficients:
[tex]\displaystyle \frac{\text{Coefficient of $\mathrm{O_2}$}}{\text{Coefficient of $\mathrm{C_8H_{18}}$}} = \frac{25}{2}[/tex].
Therefore:
[tex]\displaystyle \frac{n(\mathrm{O_2},\, \text{consumed})}{n(\mathrm{C_8H_{18}},\, \text{consumed})} = \frac{25}{2}[/tex].
Rearrange to obtain:
[tex]\displaystyle n(\mathrm{O_2},\, \text{consumed}) = \frac{25}{2}\times n(\mathrm{C_8H_{18}},\, \text{consumed})[/tex].
It is already determined that [tex]\displaystyle n({\rm C_8 H_{18}})\approx 6.1454\; \rm mol[/tex]. Hence, the number of moles of oxygen gas required will be:
[tex]\begin{aligned}& \frac{25}{2}\times n(\mathrm{C_8H_{18}}) \approx \frac{25}{2}\times 6.1454\; \rm mol \approx 76.817\; \rm mol\end{aligned}[/tex].
Mass of O₂ required
What would be the mass of that [tex]76.817\; \rm mol[/tex] of [tex]\rm O_2[/tex]?
[tex]\begin{aligned}&m({\rm O_2}) \\ &= n({\rm O_2}) \cdot M({\rm O_2})\\ &\approx 76.817\; \rm mol \times 31.998\; \rm g \cdot mol^{-1} \\ &\approx 2.46\times 10^3\; \rm g\end{aligned}[/tex].