Find the principal value of the following expressions. Write your answer in the form a + ib.

(a)[tex](-1)^{\sqrt{2} }[/tex]

(b) [tex]sin^{2} i[/tex]

(c)[tex]cosh(\sqrt{2}+3i )[/tex]

Respuesta :

Answer:

  (a) -0.266255 -0.963903i

  (b) -1.381098

  (c) -2.156385 +0.273077i

Step-by-step explanation:

A suitable calculator is very handy for such questions. See attached.

__

Euler's relation and the definitions of sin and cosh in exponential terms are helpful.

(a)

  [tex](-1)^{\sqrt{2}}=e^{i\pi\sqrt{2}}=\cos{(\sqrt{2}\cdot180^{\circ})}+i\sin{(\sqrt{2}\cdot180^{\circ})}\\\\\approx\cos{254.558^{\circ}}+i\sin{254.558^{\circ}}\\\\\approx\boxed{-0.26625534-0.96390253i}[/tex]

__

(b)

  [tex]\sin^2{i}=(-i\sinh{(-1)})^2=-\sinh^2{(-1)}\approx\boxed{-1.38109785}[/tex]

__

(c)

  [tex]\cosh{(\sqrt{2}+3i)}=\dfrac{e^{\sqrt{2}+3i}+e^{-(\sqrt{2}+3i)}}{2}\\\\=\dfrac{e^{\sqrt{2}}(\cos{3}+i\sin{3})+e^{-\sqrt{2}}(\cos{(-3)}+i\sin{(-3)})}{2}\\\\=\cos{(3)}\cosh{\sqrt{2}}+i\sin{(3)}\sinh{\sqrt{2}}\\\\=\boxed{-2.15638538+0.27307665i}[/tex]

_____

The useful relations are ...

  [tex]e^{i\theta}=\cos{\theta}+i\sin{\theta}\\\\\sin(\theta)=\dfrac{e^{i\theta}-e^{-i\theta}}{2i}=-i\sinh{(i\theta)}\\\\\cosh{(\theta)}=\dfrac{e^{\theta}+e^{-\theta}}{2},\ \sinh{(\theta)}=\dfrac{e^{\theta}-e^{-\theta}}{2}[/tex]

Ver imagen sqdancefan
ACCESS MORE