Respuesta :
Answer:
D
Step-by-step explanation:
The required line is perpendicular bi sector. So it goes through the midpoint of AB. Find the midpoint of AB
Midpoint [tex](\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})\\[/tex]
Midpoint of AB = [tex](\frac{-2 + [-4]}{2} , \frac{8+2}{2})[/tex]
[tex]=(\frac{-6}{2} , \frac{10}{2})\\\\=(-3 , 5)[/tex]
Find the slope of AB, [tex]m_{1}[/tex]
slope = [tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\[/tex]
[tex]=\frac{2 - 8}{-4-[-2]}\\\\=\frac{-6}{-4+2}\\\\=\frac{-6}{-2}\\\\=3[/tex]
Slope of the perpendicular line to AB = [tex]\frac{-1}{m_{1}}[/tex] = -1/3
The required line passes through (-3, 5) and has slope -1/3
Equation of required line : y - y1 = m (x -x1)
[tex]y - 5 = \frac{-1}{3} (x - [-3])\\\\y-5=\frac{-1}{3} ( x +3)\\\\y-5=\frac{-1}{3}x + 3 *\frac{-1}{3}\\\\y-5=\frac{-1}{3}x-1\\\\y=\frac{-1}{3}x-1+5\\\\y=\frac{-1}{3}x + 4[/tex]