Respuesta :
Answer:
20 apples
Step-by-step explanation:
Let the number of apples = x
First customer:
Sold apples = (1/2) of x + 1
[tex]=\frac{x}{2}+1\\[/tex]
Remaining apples
[tex]=x -(\frac{x}{2}+1)\\\\=x - \frac{x}{2}-1\\\\=\frac{x}{2}-1\\[/tex]
Second customer:
Sold apples = (1/3) of remaining apples + 1
[tex]=\frac{1}{3}*(\frac{x}{2}-1)+1\\\\=[\frac{1}{3}*\frac{x}{2}]- \frac{1}{3}*1+1\\\\=\frac{x}{6}-\frac{1}{3}+1\\\\=\frac{x}{6}-\frac{1}{3}+\frac{3}{3}\\\\=\frac{x}{6}+\frac{2}{3}\\[/tex]
Remaining apples =
[tex]=(\frac{x}{2}-1)-(\frac{x}{6}+\frac{2}{3})\\\\=\frac{x}{2}-1-\frac{x}{6}-\frac{2}{3}\\\\=\frac{x}{2}-\frac{x}{6}-1-\frac{2}{3}\\\\=\frac{3x}{6}-\frac{x}{6}-\frac{3}{3}-\frac{2}{3}\\\\=\frac{2x}{6}-\frac{5}{3}\\\\=\frac{x}{3}-\frac{5}{3}[/tex]
Third customer:
Sold apples = (1/5) of reaming apples +1
[tex]=\frac{1}{5}*[\frac{x}{3}-\frac{5}{3}]+1\\\\=\frac{1}{5}*\frac{x}{3}-\frac{1}{5}*\frac{5}{3}+1\\\\=\frac{x}{15}-\frac{1}{3}+1\\\\=\frac{x}{15}-\frac{1}{3}+\frac{3}{3}\\\\=\frac{x}{15}+\frac{2}{3}\\\\[/tex]
Remaining apples =
[tex]=\frac{x}{3}-\frac{5}{3}-[\frac{x}{15}+\frac{2}{3}]\\\\=\frac{x}{3}-\frac{5}{3}-\frac{x}{15}-\frac{2}{3}\\\\=\frac{x}{3}-\frac{x}{15}-\frac{5}{3}-\frac{2}{3}\\\\=\frac{5x}{15}-\frac{x}{15}-\frac{7}{3}\\\\=\frac{4x}{15}-\frac{7}{3}\\[/tex]
Remaining apples with the man = 3
[tex]\frac{4x}{15}-\frac{7}{3}=3\\\\\frac{4x}{15}=3+\frac{7}{3}\\\\\frac{4x}{15}=\frac{9}{3}+\frac{7}{3}\\\\\frac{4x}{15}=\frac{16}{3}\\\\x=\frac{16}{3}*\frac{15}{4}\\\\x=4*5[/tex]
x = 20
He had 20 apples