Respuesta :
Answer:
length of the arc = 6 units
Step-by-step explanation:
[tex]given : c = 18, \: central \: \angle \: ( \theta) = 120 \degree, \: l =? \\ l = \frac{ \theta}{360 \degree} \times c \\ \\ l = \frac{120 \degree}{360 \degree} \times 18 \\ \\ l = \frac{1}{3} \times 18 \\ \\ l = 6 \: units[/tex]
Answer:6.1
Step-by-step explanation:
Φ=120
circumference=18
radius=r
Circumference=2xπxr
18=2x3.14xr
18=6.28 x r
Divide both sides by 6.28
18/6.28=(6.28xr)/6.28
2.9=r
r=2.9
Length of arc =Φ/360 x 2 x π x r
Length of arc =120/360 x 2 x 3.14 x 2.9
Length of arc =(120x2x3.14x2.9) ➗ 360
Length of arc =2185.44/360
Length of arc =6.1