Respuesta :

Answer:

The answer is the demonstration, which is in the step-by-step explanation.

Step-by-step explanation:

Composite functions:

( f ᵒ g )(x) = f(g(x))

( g ᵒ f )(x) = g(f(x))

a)

f(x) = 2x

g(x) = x/2

[tex]f(g(x)) = f(\frac{x}{2}) = 2\frac{x}{2} = x[/tex]

[tex]g(f(x)) = g(2x) = \frac{2x}{2} = x[/tex]

Then

[tex]f(g(x)) = g(f(x)) = x[/tex]

b)

f(x) = 2x - 6

g(x) = (x + 6)/2

[tex]f(g(x)) = f(\frac{x+6}{2}) = 2\frac{x+6}{2} - 6 = x + 6 - 6 = x[/tex]

[tex]g(f(x)) = g(2x - 6) = \frac{2x - 6 + 6}{2} = \frac{2x}{2} = x[/tex]

Then

[tex]f(g(x)) = g(f(x)) = x[/tex]