Answer:[tex]I=112.094\ A[/tex]
Explanation:
Given
density [tex]\rho =8900\ kg/m^3[/tex]
diameter [tex]d=0.3\ mm[/tex]
Magnetic field [tex]B=5.5\times 10^{-5}\ T[/tex]
Force on the current carrying conductor placed in a magnetic field
[tex]F=BIL\sin \theta [/tex]
where L=length of conductor
[tex]\theta [/tex]=angle between magnetic field and current
If the wire is floating then weight must be balanced by weight of wire
[tex]Weight=mg=\rho ALg[/tex]
Therefore
[tex]\rho ALg=BIL\times \sin 90[/tex]
[tex]8900\times \frac{\pi}{4}(0.3\times 10^{-3})^2L\times 9.8=5.5\times 10^{-5}\times I\times L[/tex]
[tex]I=\frac{8900\times \pi\times 9\times 10^{-8}\times 9.8}{4\times 5.5\times 10^{-5}}[/tex]
[tex]I=112.094\ A[/tex]