Answer:
Attention for the conditions:
[tex]x^{2} -15>0\\2x>0\\so\\x>0[/tex]
Step-by-step explanation:
we have
[tex]log(x^{2}-15)= log(2x)\\\\x^{2} -15 = 2x\\\\x^{2} -5x+ 3x-15=0\\ (x^{2}-5x)+(3x-15)=0\\ x(x-5)+3(x-5)=0\\(x-5)(x+3)=0\\x-5=0, x=5 \\\\x+3=0, x= -3[/tex]
So the solutions are 5 because x>0