Answer:
(3) (m - 16)(m + 4)
Step-by-step explanation:
Given the expression:
m^2 -12m - 64.
Using quadratic formula:
[tex] m = \frac{-b \pm \sqrt{b^2 - 4(a)(c)}}{2(a)} [/tex]
[tex] m = \frac{12 \pm \sqrt{(-12)^2 - 4(1)(-64)}}{2(1)} [/tex]
[tex] m = \frac{12 \pm 20}{2}[/tex]
[tex] m_1 = \frac{12 + 20}{2}[/tex]
[tex] m_1 = 16[/tex]
[tex] m_2 = \frac{12 - 20}{2}[/tex]
[tex] m_2 = -4[/tex]
Then, the factored expression is:
(m - 16)(m + 4)