Respuesta :

Answer:

log_10(x) - log_10(100000)

Step-by-step explanation:

[tex]log_{10}(\frac{x}{100000} )\\log_{10}(x) -log_{10}(100000)\\[/tex]

Using the quotient property, log_{10} \dfrac{x}{(100,000)} = log_{10}(x) - log_{10}(100000).

How to find quotient of a over b/c?

WE can use the fact that division can be taken as multiplication but with the denominator's multiplicative inverse.

Thus,

[tex]\dfrac{a}{\frac{b}{c}} = a \times \dfrac{1}{\frac{b}{c} } = a \times \dfrac{c}{b} = \dfrac{a \times c}{b}[/tex]

We have to Use the quotient property to rewrite;

[tex]log_{10} \dfrac{x}{(100,000)}[/tex]

SO, [tex]log_{10} \dfrac{x}{(100,000)} = log_{10}(x) - log_{10}(100000)[/tex]

Therefore, Using the quotient property, log_{10} \dfrac{x}{(100,000)} = log_{10}(x) - log_{10}(100000).

Learn more about logarithm here:

https://brainly.com/question/20835449

#SPJ2