Respuesta :
Answer:
log_10(x) - log_10(100000)
Step-by-step explanation:
[tex]log_{10}(\frac{x}{100000} )\\log_{10}(x) -log_{10}(100000)\\[/tex]
Using the quotient property, log_{10} \dfrac{x}{(100,000)} = log_{10}(x) - log_{10}(100000).
How to find quotient of a over b/c?
WE can use the fact that division can be taken as multiplication but with the denominator's multiplicative inverse.
Thus,
[tex]\dfrac{a}{\frac{b}{c}} = a \times \dfrac{1}{\frac{b}{c} } = a \times \dfrac{c}{b} = \dfrac{a \times c}{b}[/tex]
We have to Use the quotient property to rewrite;
[tex]log_{10} \dfrac{x}{(100,000)}[/tex]
SO, [tex]log_{10} \dfrac{x}{(100,000)} = log_{10}(x) - log_{10}(100000)[/tex]
Therefore, Using the quotient property, log_{10} \dfrac{x}{(100,000)} = log_{10}(x) - log_{10}(100000).
Learn more about logarithm here:
https://brainly.com/question/20835449
#SPJ2