Answer: a) See below; b) 2/5([tex]h^{\frac{5}{2} }[/tex]) = - [tex]\frac{1}{200}[/tex].t + 0.215
Step-by-step explanation:
a) To determine the radius (x) of the volume of water remaining, use proportionality of similar triangles:
[tex]\frac{x}{2.5} = \frac{h}{4}[/tex]
x = 0.625h
Volume is
V = 1/3.π.(0.625h)².h
V = 1/3.π.0.391.h³
Using the chain rule to determine the rate of change of height in function of t:
[tex]\frac{dV}{dt} = \frac{dV}{dh} . \frac{dh}{dt}[/tex]
[tex]\frac{dh}{dt} = \frac{dV}{dt}/\frac{dV}{dh}[/tex]
[tex]\frac{dh}{dt} =[/tex] (π/512).[tex]\sqrt{h}[/tex] / 0.391.π.h²
[tex]\frac{dh}{dt} =[/tex] (π . [tex]\sqrt{h}[/tex]) / 512.0.391.π.h²
[tex]\frac{dh}{dt} =[/tex] [tex]\frac{h^{\frac{-3}{2} } }{200}[/tex]
[tex]h^{\frac{3}{2} }\frac{dh}{dt}=\frac{-1}{200}[/tex]
b) To find an equation:
[tex]h^{\frac{3}{2} }[/tex] dh = -(1/200) dt
∫ [tex]h^{\frac{3}{2} }[/tex] dh = -1/200 ∫dt
[tex]\frac{2.h^{\frac{5}{2} } }{5}[/tex] = [tex]\frac{-1.t}{200}[/tex] + c
It is known that it takes 43 minutes to empty the cone, so:
0 = [tex]\frac{-1.43}{200}[/tex] + c
c = 0.215
The equation is:
[tex]\frac{2.\sqrt[5]{h^{2}} }{5}[/tex] = [tex]\frac{-t}{200}[/tex] + 0.215
c) The equation shows how height and time are inversely proportional to each other: as time goes up, height goes down. Mathematically, though, time cannot be negative. So, the model is suitable for modeling time and height but is not mathematically correct.