Respuesta :

Answer:

The result is [tex]d = 2\sqrt{5}[/tex] units.

Step-by-step explanation:

The coordinates for A and B:

A = (-2, 0)

B = (2, 2)

-To find the distance between A and B, you need the distance formula:

[tex]d = \sqrt{(x_{2} - x_{1})^2 + (y_{2}-y_{1})^2}[/tex] Where the first coordinate is [tex](x_{1},y_{1})[/tex] and  the second coordinate is [tex](x_{2}, y_{2})[/tex].

-Use the coordinates A and B for the equation:

[tex]d = \sqrt{(2+2)^2 + (2-0)^2}[/tex]

-Then, you solve the equation:

[tex]d = \sqrt{(2+2)^2 + (2-0)^2}[/tex]

[tex]d = \sqrt{(4)^2 + (2)^2}[/tex]

[tex]d = \sqrt{16 + 4}[/tex]

[tex]d = \sqrt{20}[/tex]

[tex]d = 2\sqrt{5}[/tex]

So, therefore the distance is [tex]2\sqrt{5}[/tex] units.