Respuesta :
Answer:
Step-by-step explanation:
n = sample size = 5
a) Let us determine the sum
[tex]\sum x_i= 100+200+300+400+490=1490[/tex]
[tex]\sum x_i^2= 100^2+200^2+300^2+400^2+490^2=540100[/tex]
[tex]\sum y_i = 237+350+419+465+507=1978[/tex]
[tex]\sum y_i^2= 237^2+350^2+419^2+465^2+507^2=827504[/tex]
[tex]\sum x_i y_i=100 \times 237 + 200\times350+300 \times 419 + 400 \times 465 + 490 \times 507=653830[/tex]
Now we can determine [tex]S_x_x, S_x_y, S_y_y[/tex]
[tex]S_x_x = \sum x_i^2-\frac{(\sum x_1)^2}{n} \\= 540100 - \frac{1490^2}{5} \\= 96080[/tex]
[tex]S_x_y = \sum x_i y_i -\frac{(\sum x_i)(\sum y_i) }{n} \\\\[/tex]
[tex]653830 - \frac{1490 \times 1978 }{5} = 64386[/tex]
[tex]S_y_y = \sum y_i^2-\frac{(\sum y_i)^2 }{n} = 82750-\frac{1978^2}{5} \\\\= 45007.2[/tex]
The estimate b of the slope β is the ratio of [tex]S_x_y[/tex] and [tex]S_x_x[/tex]
[tex]b = \frac{S_x_y}{S_x_x}[/tex]
[tex]\frac{64386}{96080} = 0.67[/tex]
The mean is the sum of all value divide by number of values
[tex]\bar x= \frac{\sum x_i}{n} \\\\= \frac{100+200+300+400+490}{5} \\\\= \frac{1490}{5} = 298[/tex]
[tex]\bar y= \frac{\sum y_i}{n} \\\\= \frac{237+350+419+465+507}{5} \\\\= \frac{1978}{5} = 395.6[/tex]
The estimate a of the intercept is
[tex]a = \bar y - b \bar x[/tex]
[tex]= 395.6 - 0.69 \times 298\\= 195.9[/tex]
General least square equation;
[tex]\bar y = \alpha + \beta x[/tex]
replace alpha by a = 3 and beta by b = 0.67 in general least equation
y = a + bx
195.9 + 0.67x
b)
Scatter plot is shown in the attached file
x is on the horizontal axis
y is n the vertical axis
The degree of freedom of regression is 1
because we use one variable s predictor variable
[tex]d_f_R = 1[/tex]
The degree of freedom of error is the sample size n decrease by 2
[tex]d_f_E =n-2= 5 - 2=3[/tex]
Total df is equal to the sum of seperate degree of freedom dfR and dfE
total df = 1 +3 4
[tex]SSR = \frac{(S_x_y)^2}{S_x_x} = \frac{64386^2}{96080} \\\\= 43146.9296[/tex]
Total SS =Syy= 45007.2
SSE + Total SS = SSR
= 45007.2 - 43146.9296
= 1860.2705
![Ver imagen shallomisaiah19](https://us-static.z-dn.net/files/d45/43d4fa58c34aa53f85de9002526c1686.png)