A 3-column table with 4 rows. Column 1 is labeled Number of Girls with entries 2, 8, 0, 4. Column 2 is labeled Height in Inches with entries 51, 52, 53, 54. Column 3 is labeled Total Height with entries 102, 416, 0, 216. The national average height for girls in the sixth grade is also 52 inches. Find the average height of the girls in this class. The total number of girls is . The total height of the girls is inches. The expression to find the mean is . The average height of the girls in this class is inches.

Respuesta :

Answer:

Step-by-step explanation:

Hello!

The variable of interest is

X: height of a sixth-grade girl.

⇒The second column shows the possible values of height to be observed.(i.e. the possible values of the variable X)

⇒The first column shows the number of sixth-grade girls that were measured, they were sorted according to their height.(i.e. the frequency each value of X was observed"f(X)")

⇒The third column shows the Total height, it represents the product between the possible height value and the frequency it was observed, symbolically: x*f(X))

To know how many girls were measured, you have to calculate the total number of girls (column 1) n= 2 + 8 + 0 + 4 = 14 girls

To calculate the mean using data arranged in a frequency table you have to use the following formula:

[tex]X[bar]= \frac{sum(X*f(X))}{n}[/tex]

∑Xf(X)= 102+416+0+216= 734

[tex]X[bar]= \frac{734}{14}= 52.428 inches[/tex]

I hope it helps!

Ver imagen cchilabert

Answer:

first question: 55.7 and 60.3

second question: 53.4 and 62.6

third question: 51.1 and 64.9

Step-by-step explanation:

all correct answers for edg 2020

ACCESS MORE