Answer:
[tex]\bf{r=\frac{2r_o}{3}}[/tex] is greatest
Explanation:
Given:
[tex]S(r)=ar^2(r_{o}-r)[/tex]
[tex]\frac{ds}{dr}=2ar(r_{o}-r)+ar^2(-1)[/tex]
[tex]\frac{ds}{dr}=2ar_{o}-2ar^2-ar^2[/tex]
[tex]\frac{ds}{dr}=2ar_{o}-3ar^2[/tex]
Substitute [tex]\frac{ds}{dr} = 0[/tex], so
[tex]2ar_{o}-3ar^2=0[/tex]
Then, get the common value from the equation.
[tex]ra(2r_{o}-3r) = 0[/tex]
[tex]\bf{r=0}\\r=\frac{2r_{o}}{3}[/tex]
[tex](\frac{d^2s}{dr^2})_{r=0}=2ar_{o}-6ar[/tex]
[tex](\frac{d^2s}{dr^2})_{r=0}=2ar_{o} >0\;and, \\(\frac{d^2s}{dr^2})_{r}=\frac{2r_o}{3} <0[/tex]
So, the speed of the air is greatest.
[tex]\bf{r=\frac{2r_o}{3}}\;is\;greatest[/tex]