contestada

Q8.(10 points) a)When you cough,the radius of your trachea (windpipe) decreases,affecting the speed of the air in the trachea. If 0 r is the normal radius of the trachea, the relationship between the speed S of the air and the radius r of the trachea during a cough is given by a function of the form 2 0 S r ar r r ( ) ( ) = − , where a is positive constant. Find the radius r for which the speed of the air is greatest

Respuesta :

Limosa

Answer:

[tex]\bf{r=\frac{2r_o}{3}}[/tex] is greatest

Explanation:

Given:

[tex]S(r)=ar^2(r_{o}-r)[/tex]

[tex]\frac{ds}{dr}=2ar(r_{o}-r)+ar^2(-1)[/tex]

[tex]\frac{ds}{dr}=2ar_{o}-2ar^2-ar^2[/tex]

[tex]\frac{ds}{dr}=2ar_{o}-3ar^2[/tex]

Substitute [tex]\frac{ds}{dr} = 0[/tex], so

[tex]2ar_{o}-3ar^2=0[/tex]

Then, get the common value from the equation.

[tex]ra(2r_{o}-3r) = 0[/tex]

[tex]\bf{r=0}\\r=\frac{2r_{o}}{3}[/tex]

[tex](\frac{d^2s}{dr^2})_{r=0}=2ar_{o}-6ar[/tex]

[tex](\frac{d^2s}{dr^2})_{r=0}=2ar_{o} >0\;and, \\(\frac{d^2s}{dr^2})_{r}=\frac{2r_o}{3} <0[/tex]

So, the speed of the air is greatest.

[tex]\bf{r=\frac{2r_o}{3}}\;is\;greatest[/tex]