Respuesta :
1. [tex] 3x^2-4x=x(3x-4) [/tex] - A.
2. [tex] x^2 + 21x +20=(x-x_1)(x-x_2) [/tex]
Find the roots:
[tex] D=21^2-4\cdot 20=441-80=361, \ \sqrt{D}=19,\\ \\x_1=\dfrac{-21-19}{2}=-20, \ x_2=\dfrac{-21+19}{2}=-1 [/tex],
then
[tex] x^2 + 21x +20=(x+20)(x+1) [/tex] - C.
3. [tex] 4x^2 -9=(2x)^2-3^2=(2x-3)(2x+3) [/tex] - D.
4. [tex] 12x^3-36x^2=12x^2(x-3) [/tex] - C.
5. [tex] x^2 -5x -6=(x-x_1)(x-x_2) [/tex]
Find the roots:
[tex] D=(-5)^2-4\cdot (-6)=25+24=49, \ \sqrt{D}=7,\\ \\x_1=\dfrac{5-7}{2}=-1, \ x_2=\dfrac{5+7}{2}=6 [/tex],
then
[tex] x^2 -5x -6=(x-6)(x+1) [/tex] and the width of the lawn is x-6 - A.
6. Since [tex] x^2 + 5x -24=(x+8)(x-3) [/tex] the length and width are x+8 and x-3 - A.
7. [tex] 32 -8z^2=8(4-z^2)=8(2^2-z^2)=8(2-z)(2+z) [/tex] - B.
8. [tex] 12x^2=2\cdot 2\cdot 3\cdot x\cdot x, \\24x^2y^2=2\cdot 2\cdot 2\cdot3\cdot x\cdot x\cdot y\cdot y , \\ 46xy=2\cdot 23\cdot x\cdot y [/tex].
So the greatest common divisor is [tex] 2\cdot x=2x [/tex] - D.
9. [tex] 2x^2 -3x -35=2(x-x_1)(x-x_2) [/tex]
Find the roots:
[tex] D=(-3)^2-4\cdot (-35)\cdot 2=9+280=289, \ \sqrt{D}=17,\\ \\x_1=\dfrac{3-17}{2\cdot 2}=-\dfrac{7}{2}, \ x_2=\dfrac{3+17}{2\cdot 2}=5 [/tex],
then
[tex] 2x^2 -3x -35=2(x+\dfrac{7}{2})(x-5)=(2x+7)(x-5) [/tex] - A.
10. [tex] 81x^2 + 36x + 4=(9x)^2+2\cdot 9x\cdot 2+2^2=(9x+2)^2 [/tex] - B.
11. [tex] 18x^2+ 69x +60=3(6x^2+23x+20)=3\cdot 6(x+\dfrac{5}{2})(x+\dfrac{4}{3})=(6x+15)(3x+4) [/tex], the length is 6x+15.
12. [tex] (x^2 +2x)(5x -3) =x^2\cdot 5x-x^2\cdot 3+2x\cdot 5x-2x\cdot 3=5x^3-3x^2+10x^2-6x=5x^3+7x^2-6x [/tex] - C.
13. [tex] 30g^5 +24g^3h- 35g^2h^2 - 28h^3=(30g^5 +24g^3h)-(35g^2h^2+ 28h^3)=6g^3(5g^2+4h)-7h^2(5g^2+4h)=(5g^2+4h)(6g^3-7h^2) [/tex].
14. [tex] x^2 -16=(x-4)(x+4) [/tex] - B.
15. [tex] 81p^2 + 90p +25=(9p)^2+2\cdot 9p\cdot 5+5^2=(9p+5)^2 [/tex], the length of one side is 9p+5.