Respuesta :
[tex] \frac{1.5x 10^{-5} mol Ca^{2+}}{50ml} ( \frac{1 mol CaC O_{3} }{1 mol Ca^{2+} } )( \frac{100,000 ppm}{1 molCaC O_{3}/L } ) \\ =0.0300234[/tex]
Answer : The concentration of [tex]Ca^{2+}[/tex] ions in the water sample in ppm is, 12000 ppm
Solution : Given,
Moles of calcium = [tex]1.5\times 10^{-5}moles[/tex]
Molar mass of calcium = 40 g/mole
Volume of solution = 50 ml
First we have to calculate the mass of calcium.
[tex]\text{Mass of calcium}=\text{Moles of calcium}\times \text{Molar mass of calcium}=(1.5\times 10^{-5}moles)\times (40g/mole)=60\times 10^{-5}g=6000mg[/tex]
(1 g = 1000 mg)
Now we have to calculate the concentration of calcium.
[tex]\text{Concentration of calcium}=\frac{\text{Mass of calcium}\times 1000}{\text{Volume of solution}}=\frac{6000mg\times 1000}{50ml}=12000mg/L=12000ppm[/tex]
(1 ppm = 1 mg/L)
Therefore, the concentration of [tex]Ca^{2+}[/tex] ions in the water sample in ppm is, 12000 ppm