which expressions are equivalent to the one below? check all that apply.

log3 81 + log3 81

A. log3 6561
B. log3(3^8)
C. 8
D. log 6561

Please help me!!!!

Respuesta :

Julik
[tex]\log_a(x) +\log_a(y) =\log_a(x\times y) \\ \\ \log_3(81)+\log_3(81)=\log_3(81\times81) =\log_3(6561) [/tex]
A. log3 6561
[tex]\log_3(6561)=log_3(3^8)=8 \\ [/tex]
В.  log3 (3^8)
С. 8

Answer:

Option A , B and C are correct

Step-by-step explanation:

Using the logarithmic rules:

[tex]\log_b m + \log_b n = \log_b (mn)[/tex]

[tex]\log_b b^m = m[/tex]

Given the expression:

[tex]\log_3 81+ \log_3 81[/tex]

Apply the logarithmic rules:

[tex]\log_3 (81 \cdot 81)[/tex]             ....[1]

⇒[tex]\log_3 6561[/tex]

[1] ⇒

[tex]\log_3 (81 \cdot 81)[/tex]

We can write this as:

[tex]\log_3 (3^4 \cdot 3^4) = \log_3 (3^8)[/tex]

apply the logarithmic rules we get;

[tex]\log_3 3^8 = 8[/tex]

Therefore, the expression are equivalent to the [tex]\log_3 81+ \log_3 81[/tex] are:

[tex]\log_3 6561[/tex]

[tex]\log_3 (3^8)[/tex] and

8

ACCESS MORE