Respuesta :
Answer:
D. [tex]123\ mm^2[/tex]
Step-by-step explanation:
The cylindrical ring has outside diameter of 16 mm and inside diameter of 10 mm.
The area of the outer circle,
[tex]A_{outer}=\pi \cdot \dfrac{d^2}{4}=\pi \cdot \dfrac{16^2}{4}=64\pi\ mm^2[/tex]
The area of the inner circle,
[tex]A_{inner}=\pi \cdot \dfrac{d^2}{4}=\pi \cdot \dfrac{10^2}{4}=25\pi\ mm^2[/tex]
So the area of the ring will be,
[tex]A_{outer}-A_{inner}=64\pi-25\pi=39\pi=122.52\approx 123\ mm^2[/tex]