[tex]f(x)= \left \{ {{x + 10; \ \ \ x \ \textless \ 8} \atop {10-x; \ \ \ x \geq 8}} \right. \\ \\ lim_{x \rightarrow 8} (f(x))^-=8+10=18 \\ lim_{x \rightarrow 8} (f(x))^+=10-8=2 \\ Since \ lim_{x \rightarrow 8} (f(x))^- \neq lim_{x \rightarrow 8} (f(x))^+[/tex]
Therefore, the limit does not exist.