Find the length of the segment. Then find the coordinates of the midpoint of the segment.
![Find the length of the segment Then find the coordinates of the midpoint of the segment class=](https://us-static.z-dn.net/files/dff/b85f5b90c3e43facdca5d66422a4d05a.jpg)
From the given graph AB
Length of the segment AB is [tex]8\sqrt{2} units[/tex]
Coordinates of the midpoint is (6,1)
Given : A is (10,5) and B is (2,-3)
To find out the length of the line segment we use distance formula
distance =[tex]D=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]
A is (x1,y1)=(10,5)
Bis (x2,y2) =(2,-3)
Substitute the values inside the formula
[tex]AB=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\\AB=\sqrt{\left(2-10\right)^2+\left(-3-5\right)^2}\\\\AB=\sqrt{\left(-8\right)^2+\left(-8\right)^2}\\AB=\sqrt{128} \\AB=8\sqrt{2}[/tex]
Length of the segment AB is [tex]8\sqrt{2} units[/tex]
Now we find midpoint using midpoint formula
[tex]\left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)\\\left(\frac{2+10}{2},\:\frac{-3+5}{2}\right)\\(6,1)[/tex]
Coordinates of the midpoint is (6,1)
Learn more : brainly.com/question/17725325