Respuesta :

The length of segment: |-1 - (-8)| = |-1 + 8| = |7| = 7

The coordinate of midpoint: (-1+(-8))/2 = (-9)/2 = -4.5

From the given graph AB

Length of the segment AB is [tex]8\sqrt{2} units[/tex]

Coordinates of the midpoint is (6,1)

Given : A is (10,5)  and B is (2,-3)

To find out the length of the line segment we use distance formula

distance =[tex]D=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

A is (x1,y1)=(10,5)

Bis (x2,y2) =(2,-3)

Substitute the values inside the formula

[tex]AB=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\\AB=\sqrt{\left(2-10\right)^2+\left(-3-5\right)^2}\\\\AB=\sqrt{\left(-8\right)^2+\left(-8\right)^2}\\AB=\sqrt{128} \\AB=8\sqrt{2}[/tex]

Length of the segment AB is [tex]8\sqrt{2} units[/tex]

Now we find midpoint using midpoint formula

[tex]\left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)\\\left(\frac{2+10}{2},\:\frac{-3+5}{2}\right)\\(6,1)[/tex]

Coordinates of the midpoint is (6,1)

Learn more : brainly.com/question/17725325