Respuesta :
[tex]f(x)2\cdot3^x\\\\the\ domain:\ x\in(-\infty;\ \infty)=\mathbb{R}\\\\the\ range:\ y\ib(0;\ \infty)[/tex]
Answer:
A) domain: (-∞,∞); range: (0,∞)
Step-by-step explanation:
The given function f(x) = [tex]2(3^x)[/tex]
Here x represents the domain and f(x) represents the range.
The given function is an exponential function.
The general form of an exponential function y = [tex]a.b^x[/tex].
In the given equation, a =3 which is greater than 1. Therefore, when x increases the function f(x) tends to infinity.
When x decreases the function f(x) tends to zero.
That is, when x --> ∞, the function f(x) --> ∞
When x --> -∞, the function f(x) --> 0
Therefore, the function has the following domain and range.
Domain = (-∞, ∞)
Range = (0, ∞)