Respuesta :
We can use the combined gas law equation to solve this: P1V1/T1 = P2V2/T2
(1atm)(6000L) / (273K) = (0.3atm)V2 / (240K)
21.978 atmL/K = 0.00125atm/K V2
V2 = 17582.41758L
To the nearest tenth, the final volume is 17582.4L
(1atm)(6000L) / (273K) = (0.3atm)V2 / (240K)
21.978 atmL/K = 0.00125atm/K V2
V2 = 17582.41758L
To the nearest tenth, the final volume is 17582.4L
Answer : The final volume of the balloon at this temperature and pressure is, 17582.4 L
Solution :
Using combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 1 atm
[tex]P_2[/tex] = final pressure of gas = 0.3 atm
[tex]V_1[/tex] = initial volume of gas = 6000 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = 273 K
[tex]T_2[/tex] = final temperature of gas = 240 K
Now put all the given values in the above equation, we get the final pressure of gas.
[tex]\frac{1atm\times 6000L}{273K}=\frac{0.3atm\times V_2}{240K}[/tex]
[tex]V_2=17582.4L[/tex]
Therefore, the final volume of the balloon at this temperature and pressure is, 17582.4 L