Respuesta :
The area of a square is given by;
Area=[tex] side^{2} [/tex]
Area=[tex] 5^{ \frac{2}{5} } * 5^{ \frac{2}{5} } [/tex]
Basing on the law of indices;
[tex] a^{m} + a^{n} [/tex]=[tex] a^{m+n} [/tex]
so,
[tex] 5^{ \frac{2}{5} } * 5^{ \frac{2}{5} } = 5^{ \frac{2}{5}+ \frac{2}{5} } = 5^{ \frac{4}{5} } square inches[/tex]
Area=[tex] side^{2} [/tex]
Area=[tex] 5^{ \frac{2}{5} } * 5^{ \frac{2}{5} } [/tex]
Basing on the law of indices;
[tex] a^{m} + a^{n} [/tex]=[tex] a^{m+n} [/tex]
so,
[tex] 5^{ \frac{2}{5} } * 5^{ \frac{2}{5} } = 5^{ \frac{2}{5}+ \frac{2}{5} } = 5^{ \frac{4}{5} } square inches[/tex]
Answer:
[tex]5^{\frac{4}{5}}[/tex]
Step-by-step explanation:
We know that the area of a square is given by the formula
Area =[tex]s^2[/tex]
Where s is the side of the square which is [tex]5^{\frac{2}{5}}[/tex] in our problem.
Hence the area can be calculated as
Area=[tex](5^{\frac{2}{5}})^{2}[/tex]
Here we apply the exponent rule which says
[tex] (x^{a})^{b}=x^{ab}[/tex]
Hence
[tex] (5^{\frac{2}{5}})^{2}=5^{\frac{2*2}{5}}[/tex]
[tex] (5^{\frac{2}{5}})^{2}=5^{\frac{4}{5}}[/tex]
Answer : [tex]Area= 5^{\frac{4}{5}}[/tex]