Respuesta :

[tex]f(x) = 3x^{2}tan(\frac{\pi x}{2})[/tex]
[tex]f(x) = 3x^{2}[\frac{1 - cos(\pi x)}{sin(\pi x)}][/tex]
[tex]f(x) = 3x^{2}[csc(\pi x) - cot(\pi x)][/tex]
[tex]f(x) = 3x^{2}csc(\pi x) - 3x^{2}cot(\pi x)[/tex]
[tex]y = 3x^{2}csc(\pi x) - 3x^{2}cot(\pi x)[/tex]
[tex]x = 3y^{2}csc(\pi x) - 3y^{2}cot(\pi x)[/tex]

[tex]x = 3y^{2}csc(\pi x) - 3y^{2}cot(\pi x)[/tex]
[tex]3 = 3y^{2}csc(\pi x) - 3y^{2}cot(\pi x)[/tex]
[tex]3 = 3y^{2}[csc(\pi x)] - 3y^{2}[cot(\pi x)][/tex]
[tex]3 = 3y^{2}[csc(\pi x) - cot(\pi x)][/tex]
[tex]3 = 3y^{2}[\frac{1 - cos(\pi x)}{sin(\pi x)}][/tex]
[tex]3 = 3y^{2}tan(\frac{\pi}{2}y)[/tex]
[tex]1 = y^{2}tan(\frac{\pi}{2}y)[/tex]
[tex]\frac{1}{tan(\frac{\pi}{2}y)} = y^{2}[/tex]
[tex]cot(\frac{\pi}{2}y) = y^{2}[/tex]
[tex]cot^{-1}[cot(\frac{\pi}{2}y)] = cot^{-1}(y^{2})[/tex]
[tex]\frac{\pi}{2}y = cot^{-1}(y^{2})[/tex]
[tex]\pi y = 2cot^{-1}(y^{2})[/tex]
[tex]y = \frac{2cot^{-1}(y^{2})}{\pi}[/tex]

[tex]x = 3y^{2}csc(\pi x) - 3y^{2}cot(\pi x)[/tex]
[tex]5 = 3y^{2}csc(\pi x) - 3y^{2}cot(\pi x)[/tex]
[tex]5 = 3y^{2}[csc(\pi x)] - 3y^{2}[cot(\pi x)][/tex]
[tex]5 = 3y^{2}[csc(\pi x) - cot(\pi x)][/tex]
[tex]5 = 3y^{2}[\frac{1 - cos(\pi x)}{sin(\pi x)}][/tex]
[tex]5 = 3y^{2}tan(\frac{\pi}{2}y)[/tex]
[tex]1\frac{2}{3} = y^{2}tan(\frac{\pi}{2}y)[/tex]
[tex]\frac{5}{3tan(\frac{\pi}{2}y)} = y^{2}[/tex]
[tex]1\frac{2}{3}cot(\frac{\pi}{2}y) = y^{2}[/tex]
[tex]\sqrt{1\frac{2}{3}cot(\frac{\pi}{2}y)} = y[/tex]
RELAXING NOICE
Relax