Respuesta :
f(x) = 8x2 − x3
f'(x) = 16x - 3x²
f'(2) = 16(2) - 3(2)²
f'(2) = 20
Using point-slope form:
y - y1 = m(x - x1)
y - 24 = 20 ( x - 2)
Therefore, the equation would be:
y = 20x - 16
f'(x) = 16x - 3x²
f'(2) = 16(2) - 3(2)²
f'(2) = 20
Using point-slope form:
y - y1 = m(x - x1)
y - 24 = 20 ( x - 2)
Therefore, the equation would be:
y = 20x - 16
f'(2) = 20
Equation of the tangent line → y = 20x - 16
Further explanation
To solve this problem there are several basic principles in Derivatives that need to be recalled, namely:
[tex]y = a ~ x^n \Rightarrow \frac{dy}{dx} = a ~ n ~ x^{n-1}[/tex]
[tex]y = \sin x \Rightarrow \frac{dy}{dx} = \cos x[/tex]
[tex]y = \cos x \Rightarrow \frac{dy}{dx} = - \sin x[/tex]
[tex]y = u \times v \Rightarrow \frac{dy}{dx} = u' \times v + u \times v'[/tex]
[tex]y = u \div v \Rightarrow \frac{dy}{dx} = \frac{u' \times v - u \times v'}{v^2}[/tex]
[tex]y = u^n \Rightarrow \frac{dy}{dx} = n \times u^{n-1} \times u'[/tex]
[tex]\texttt{where u and v are functions in variable x}[/tex]
[tex]\texttt{and u' and v' are derivatives of u and v}[/tex]
Let us now tackle the problem !
Given:
[tex]f(x) = 8x^2 - x^3[/tex]
[tex]f'(x) = 8(2x^{2-1}) - 3x^{3-1}[/tex]
[tex]f'(x) = 16x^1 - 3x^2[/tex]
[tex]f'(x) = 16x - 3x^2[/tex]
[tex]f'(2) = 16(2) - 3(2)^2[/tex]
[tex]f'(2) = 32 - 12[/tex]
[tex]f'(2) = \boxed{20}[/tex]
Equation of the tangent line to the curve
[tex]y - y_1 = m ( x - x_1 )[/tex]
[tex]y - 24 = f'(2) ( x - 2 )[/tex]
[tex]y - 24 = 20 ( x - 2 )[/tex]
[tex]y - 24 = 20x - 40[/tex]
[tex]y = 20x - 40 + 24[/tex]
[tex]\boxed {y = 20x - 16}[/tex]
Learn more
- Implicit Differentiation : https://brainly.com/question/4711711
- Logarithmic Differentiation : https://brainly.com/question/9226310
- Calculus Problem : https://brainly.com/question/11237537
Answer details
Grade: High School
Subject: Mathematics
Chapter: Differentiation
Keywords: Maximum , Minimum , Value , Function , Variable , Derivation , Differentiation
![Ver imagen johanrusli](https://us-static.z-dn.net/files/d1a/d8711585150c0a3cb4937079590d6cea.png)