Respuesta :

The question ask to find and compute the possible formula for the function below where as A = (-1,32) and B= (1,8).  In my own calculation and further computation about the problem and also following the rule of general exponential function, the formula would be y = a*(b^x). I hope this would help 

Step-by-step explanation:

Let the equation is [tex]y = ab^x[/tex]  ............ (1)

Putting the values of point A in equation (1) as follows.

                  [tex]y = ab^x[/tex]

                  [tex]32 = ab^(-1)[/tex] ........... (2)

Putting the values of point B in equation (1) as follows.

                  [tex]y = ab^x[/tex]

                  [tex]8 = ab^(1)[/tex] ................ (3)

Now, divide the equation (2) by equation (3) as follows.

            [tex]\frac{32}{8} = \frac{ab^(-1)}{ab^(1)}[/tex]

Cancelling out with common factors, the equation will be written as follows.

             4 = [tex]\frac{b^{-1}}{b^1}[/tex]

             4 = [tex]\frac{1}{b^1 \times b^{1}}[/tex]

             4 = [tex]\frac{1}{b^2}[/tex]

or,          [tex]b^{2} = \frac{1}{4}[/tex]

Taking square root on both the side, we get

               b = ± [tex]\frac{1}{2}[/tex]

Case 1. Place the value of b = +[tex]\frac{1}{2}[/tex] in equation (3) as follows.

            [tex]8 = ab^1[/tex]

            [tex]8 = a(\frac{1}{2})^{1}[/tex]

            [tex]8 \times 2 = a[/tex]

                      a = 16

Case 2. Place the value of b = -[tex]\frac{1}{2}[/tex] in equation (3) as follows.

             [tex]8 = ab^1[/tex]

                  8 = [tex]a \times (\frac{-1}{2})^{1}[/tex]

            [tex]- 8 \times 2 = a[/tex]

                      a = - 16

ACCESS MORE