Respuesta :

we are asked to evaluate the expression sin-1(-0.5). The answer is an angle with units of degrees or radians. In this case, we use a calculator to evaluate the expression. The answer is -30 degrees or negative pi/6. The angle is valid in the third and fourth quadrants

Answer:   [tex]\dfrac{-\pi}{6}[/tex]

Step-by-step explanation:

To find : The exact value of [tex]\sin^{-1}(-0.5)[/tex] .

We know that [tex]\sin^{-1}(\dfrac{1}{2})=\dfrac{\pi}{6}[/tex].

The range of  [tex]\sin^{-1}(x)[/tex] is between [tex]\dfrac{-\pi}{2}\text{ and }\dfrac{\pi}{2}[/tex]

Let [tex]t=\sin^{-1}(-0.5)[/tex]

[tex]\sin t=-0.5=-\sin(\dfrac{\pi}{6})=\sin(\dfrac{-\pi}{6})\ [\text{Since }}\sin(-x)=-\sin x][/tex]  

[tex]\sin(\dfrac{-\pi}{6})=0.5[/tex]

Hence, the principal value of  [tex]\sin^{-1}(-0.5)=\dfrac{-\pi}{6}[/tex]